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Generalized length scales for three-dimensional dendritic growth
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The crucial length scale of dendritic growth is the tip radius. Usually it is determined by fitting the data to
a theoretical function. We present a method of a generalized tip radius which is entirely based on geometric
considerations and is not dependent on an underlying assumption of the shape of the tip. Furthermore the
results are stable and the average change of the tip radius between successive images is less than 6%.
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Pattern formation is of great interest in materials sciencérener and Temkifi4] however have shown analytically that
as well as in theoretical physics as it is found everywhere irthe intermediate region behind the tip of the dendrite, where
nature[1]. The growth of a crystal into a supercooled melt no side branches grow yet, is not described by a parabola but
may lead to dendritic patterns, which are considered to beather by a hyperbolic function
archetypes for pattern formation far from equilibrium start-
ing from initially homogeneous conditions. A typical result
of such a process is the microscopic structure of cast metals.
There is great theoretical and technical interest in modeling
these processes. Usually models are based on certain da-the general casg=f(x)=a|x|® the radius of curvature is
sumptions, and therefore it is necessary to verify models bgiven by
comparing them with experiments. The tip radRig, is the
most important intrinsic length scale of dendrites; therefore,
it is a suitable quantity for such a comparison. In this paper R|X—>0:b(b_ 1)a(
we will show why procedures used in the literature to deter-
mine R, might lead to results which are difficult to com- The second derivative of(x) is diverging inx=0 for b
pare. We propose a procedure to deternie, which can  #2. Notice that for the determination of the tip radius the
be applied easily and is independent of any fitting procecaseb=2 is special:

5
y=f(x)=alx|® with b:§. 3)

1+a2b2x2b72)3/2X27b. (4)

dures.
A three-dimensional dendrite as observed in experiments 0, 1<b<2
is shown in Fig. 1. Details of an experimental setup to ob- 1
serve the development of dendritic structuiessitu are Rplyeo=9 ==, b=2 (5)
given in Ref.[2]. The contour, as extracted from such an 2a
image[3], is the basic information to analyze the shape of a o, b>2.
dendrite.
A convenient measure to characterize the tip and its beObviously the tip radius is not defined fbr=3. In the range
havior is the tip radius, which is defined as y<2R, it was found in Ref[2] that a parabola, a power law,

1 1+f!2 3/2
1_@a+r= i

K f//

whereR is the radius of curvature arel the curvature for a
given analytical functionf(x) describing the tip in a two-
dimensional projection of the dendrite. andf” denote the
first and second derivatives, respectively. It is important to
note that a radius of curvature is only defined if béthand

f” are continuous anél” is nonzero in the point of interest.
In case of a parabolic solutiop= f(x) =ax? in two dimen-
sions it is found that

1
Rtip:R|x=0:2_a- ) ) .
FIG. 1. Typical dendritic growth of a xenon crystal. The crystal
is oriented in such a way that the maximal projection area is visible.
The other two fins developed by the fourfold symmetry grow
*Electronic address: hsinger@solid.phys.ethz.ch perpendicular to the focusing plane. The scale bar corresponds to
Electronic address: bilgram@solid.phys.ethz.ch 250 um.
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and a fourth-order polynomial could fit the tip of xenon den-
drites equally well. However, foy>2R the power law has
been found to fit the shape of the dendrite over a range of
more than 60Qum, much better than a parabola or a fourth-
order polynomial. The calculations of Brener and Temkin
have been performed for a nonaxisymmetric dendrite. In Fig.
1 a dendrite is shown where the fins reach down to the den
drite tip as an example of a nonaxisymmetric dendrite tip.—=
For dendrites with a somewhat more axisymmetric tip such.z;
as the ones found for succinonitril€CN) this fit may be <=
less appropriate. Such dendrites have been studied in Ref o
[5,6]. T
First attempts to characterize dendritic structures were
based on the studies of Papapetféliand Ivantsoy 8], who
found a rotational paraboloid to be a steady state solution of
the diffusion problem of the latent heat. Fitting the two-
dimensional projection of a dendrite with a parabgla

=ax?, Hurlimannet al.[9] realized that the fitting parameter < 9 . . . . : .

a depends on the fitting heightand used an extrapolation to 0 100 200 300 400 500

the fitting height h—0 to define the tip radiusR, h [um]

=limp_oRparan(h). Dougherty and Gollub[10], on the

other hand, used a fixed, arbitrary height 3R for fitting. FIG. 2. Experimental determination of the tip radius by extrapo-

LaCombeet al. [5] used fourth-order polynomials to de- lating the valueR,. Different fits for severalAh (starting at every
scribe the shape of a dendrite. Finally Bisgi2q fitted the  arrow) are plotted. A huge domain of differeR can be found.

shape of a dendrlte_ byypcx_1~67_ power law and fou_nd grati- - rpis s depicted in Fig. 2. Different fits for severah start-
fying agreement with the findings of Brent]. This short "5 each arrow are plotted. As can be easily seen, a huge
historical overview shows that the experimental determinayymain of different extrapolated values feg can be found.

tion of the tip radius differs significantly. A similar overview Therefore, this way of determination is not favorable.

can be found in Ref6]. _ . Karmaet al. [6], noticing the problem of the determina-

It should be noted that depending on the underlying anation of the tip radius as well, presented an integral method of
lytical assumption of the shape of the tip an exact determifinding Ry, of three-dimensional simulated dendrites by in-
nation of the tip radius is not possiblas shown aboveThe  tegrating cross sections perpendicular to the axis of growth
exception is the parabola, and at first sight the approach Gfery close to the tip and determining the tip radius by the
Hurlimann et al. [9] seems quite reasonable to reduce arbi-calculated areas. However, it should not be neglected that at
trariness. However, we will show that depending on thejeast in certain cases integral methods might hide relevant
choice of the extrapolation a huge regime of differBptcan  and system dependent information, for example in the tem-

be obtained. Let us assume that Bisang's finding of a descripyoral evolution of the tip radius, as integral methods tend to
tion of the t|p radius with Brener’s model holds even for smooth out noise or possib|e small oscillations.

heights very close to the dendrite tif(x)=ax>". For a We think that the tip radius, being such an important
given helgzhth we will now fit this function with a parabola value, should be determined in a way that is independent of
fa(x)=cx analytical assumptions of the shape of the tip and is only

based on geometrical properties. Moreover the method
L s - b should be resistant against pixelization errors and should not
f (ax>=cx%)“dx=min, (6) change significantly on successive images unless there is a
0 y . . . s
physical reason for this behavigsuch as tip splitting for
example, where the tip radius increases before spliftidg).
In Ref.[2] it was shown, at least for xenon dendrites, that
although higher order polynomialsn€3, .. .,7) approxi-
h\ 15 mate the tip shape better than a parabola, a dependence on
(_ the fitting height is found which cannot be neglected. For
R(h)= 1 a @) polynomials withn>7 the fits became numerically unstable.
15 a ’ Additionally the tip radius shows a dependence on the order
of the fitting polynomial and no order of the polynomials that
thus leading to an extrapolation limyR(h)=0 for an ana- would best fit the contour could be found. Therefore it was
lytical function. As limits are never reached when dealingconcluded that the tip shape of xenon dendrites could not be
with experimental data usually an intervalh is chosen described by a parabola or low-order polynomials in a well-
where the slope dR(h) does not change “significantly” and defined and reproducible way. In Rg5], on the other hand,
then is fitted with a straight line which will in 0 determine it was found that a fourth-order polynomial=—r?/2
the approximated extrapolated value of the tip radys,,,. —Q(¢)r*, where ¢ corresponds to the deviation from the

wherel is defined byh="f(l)=al®3. After a short calcula-
tion it is found that the tip radius follows the relation
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FIG. 3. Generalized length scale defined as half of the distance FIG. 4. Generalized tip radius for different fitting heights and
of the point of intersection between the curfie this casey  different fitting methodd, . .. f,. The variance of the tip radius is
=f(x) =ax] with the liney=x. Here the parametds goes from l|ess than 1.5% of the average tip radius.

0.7 to 4.0. This scale can be applied to any experimental data inde-

pendently of an underlying assumption of the analytical shape. Ly=a( LX%)P (12
maximal projection area, was sufficient to describe the tip _ - (1)P7H (q)MemL gL
shape of SCN dendrites. Indeed, the coefficients of such a Y=L" "ax’=a 2 a =3 *-

presumed polynomial have a physical meaning. However, in (12)
order to introduce a certain uniformity into the measure-

ments of different substances we propose a more model infhe prefactorc=(1)?~* depends only o and is therefore

dependent determination of the tip shape. universal for all shapes with the sarbeBy introduction of

It is our aim to motivate the generalization by anotherihe |ength scalt it is thus possible to define a valid scale for
geometrical interpretation of the tip radif®=1/2a in the 5| p>1.

parabolic case. Let us consider the functipn f(x) =ax?,

having its tip in the origin. The lengtR=1/2a=3(1/a) is 2 -
exactly; of the distance, wheref(x) intersects the function P a>§1§
y=X: = 4" order
= 5:: order
1 - 6 order
axi=x = x=—. (8) &
a 1S
S
We therefore define the generalized scaling lengthas 2
the distance where a convex functiffor exampley = f(x) _'C'
=ax® for Brener’'s modél meetsy =x: =
1(b—1 E
. B 1 (b—1) =
ax’=x = x= © £
a s |
and
1/1 1/(b—1)
L: E 5 , (10) <7 T T T T T
o o _ 0 5 10 15 20
recovering in the case df=2 the parabolic tip radius. The Images
behavior for different parametebsis shown in Fig. 3. In the
case of dendritic growth with=3 we findL= %(1/a)3’2- FIG. 5. Generalized tip radius for successive images at a given
Scaling dendrites by this length scafe={(x/L, y=y/L) fitting heighth=5L for the different fitting functions, . . . f,. The
will result in variance of the tip radius is less than 6% of the average tip radius.
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Indeed the presented method is independent of any underdependent of the functionf, . . . f, the relative error for
lying analytical assumptions of the shape. The presented delifferent heightsh=3 ... 5L is below 1.5% and for a fixed
termination can be easily used for simulations and analyticaheighth=5L the relative error between two successive im-
functions as well as for experimental data. We would like toages is less than 6%. These errors are the worst case we have
emphasize that this generalized tip radius is derived from th@ncountered. We have also found sequences showing 0.5%
tip radius for a parabola and corresponds only in the paragor gifferent heights and also 0.5% for successive images. A
bolic case to the actual radius of curvature. A circle for €X-plot for different heights is given in Fig. 4. The heights are
ample described by=r— yr“—x* having a radius of cur- piotted up to a critical height, where the side branches start
\F/{aturel 0f Reur, =1 would have a generalized tip radius of 4 pe yisible. The behavior for successive images is shown in

tip= 2l Fig. 5.

It should be noted that experimental data are usually not gwe have presented a method which determines the tip
smooth at all due to measurement errors or pixelization. I, qjys for any given experimental structure without any as-
the method is applied directly to the pixels huge errors mustmnrion about the analytical description of the data. It was
be taken into account. We therefore suggest fitting the eXgpown that another reasonable scheme for determining the
penmgntal data by a sufficiently high ordgr polynomlgl tip radius Ry=lim,_,oRparan(h) is not converging and
(4-6) in order to receive a least square analytical descriptiony | therefore not be used. Fitting the dendrite tip by a
of the data. These coefficients of the polynomial as such arg, ,, order polynomial does not eliminate the fitting height
not physically relevant as they serve only to accurately depropiem, although it approximates the tip shape much better
scribe the data. A subsequent intersection Withx is very  ihan a parabola. We have proved that with the presented
easy to perform. _ , method the variance for the tip radius of fits with different

In order to test the independence of analytical assumpiing heights applied to one image is less than 1.5% and the

tion55/3 we have used different fitting method$,  rejative error of the tip radius between successive images is
=ax””, fyz,4=pol(4,5,6), where pol{) meansnth order |55 than 6%.

polynomial. However, we did not use a simple parabola fit as

Bisang found very good agreement for Brengrisax® de- We thank Professor Dr. H. R. Ott for his support of our
pendence and found that a parabola fit does not adequatedxperiments. This work was supported by the Swiss National
describe the shape of our dendritic tips. We have found thascience Foundation.
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