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Generalized length scales for three-dimensional dendritic growth
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~Received 9 September 2003; published 23 March 2004!

The crucial length scale of dendritic growth is the tip radius. Usually it is determined by fitting the data to
a theoretical function. We present a method of a generalized tip radius which is entirely based on geometric
considerations and is not dependent on an underlying assumption of the shape of the tip. Furthermore the
results are stable and the average change of the tip radius between successive images is less than 6%.
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Pattern formation is of great interest in materials scie
as well as in theoretical physics as it is found everywhere
nature@1#. The growth of a crystal into a supercooled m
may lead to dendritic patterns, which are considered to
archetypes for pattern formation far from equilibrium sta
ing from initially homogeneous conditions. A typical resu
of such a process is the microscopic structure of cast me
There is great theoretical and technical interest in mode
these processes. Usually models are based on certain
sumptions, and therefore it is necessary to verify models
comparing them with experiments. The tip radiusRtip is the
most important intrinsic length scale of dendrites; therefo
it is a suitable quantity for such a comparison. In this pa
we will show why procedures used in the literature to det
mine Rtip might lead to results which are difficult to com
pare. We propose a procedure to determineRtip , which can
be applied easily and is independent of any fitting pro
dures.

A three-dimensional dendrite as observed in experime
is shown in Fig. 1. Details of an experimental setup to o
serve the development of dendritic structuresin situ are
given in Ref. @2#. The contour, as extracted from such
image@3#, is the basic information to analyze the shape o
dendrite.

A convenient measure to characterize the tip and its
havior is the tip radius, which is defined as

R5
1

k
5

~11 f 82!3/2

f 9
, ~1!

whereR is the radius of curvature andk the curvature for a
given analytical functionf (x) describing the tip in a two-
dimensional projection of the dendrite.f 8 and f 9 denote the
first and second derivatives, respectively. It is important
note that a radius of curvature is only defined if bothf 8 and
f 9 are continuous andf 9 is nonzero in the point of interes
In case of a parabolic solutiony5 f (x)5ax2 in two dimen-
sions it is found that

Rtip5Rux505
1

2a
. ~2!
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Brener and Temkin@4# however have shown analytically tha
the intermediate region behind the tip of the dendrite, wh
no side branches grow yet, is not described by a parabola
rather by a hyperbolic function

y5 f ~x!5auxub with b5
5

3
. ~3!

In the general casey5 f (x)5auxub the radius of curvature is
given by

Rux→05
1

b~b21!a
~11a2b2x2b22!3/2x22b. ~4!

The second derivative off (x) is diverging in x50 for b
Þ2. Notice that for the determination of the tip radius t
caseb52 is special:

Rbux505H 0, 1,b,2

1

2a
, b52

`, b.2.

~5!

Obviously the tip radius is not defined forb5 5
3 . In the range

y,2R, it was found in Ref.@2# that a parabola, a power law

FIG. 1. Typical dendritic growth of a xenon crystal. The crys
is oriented in such a way that the maximal projection area is visi
The other two fins developed by the fourfold symmetry gro
perpendicular to the focusing plane. The scale bar correspond
250 mm.
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and a fourth-order polynomial could fit the tip of xenon de
drites equally well. However, fory.2R the power law has
been found to fit the shape of the dendrite over a range
more than 600mm, much better than a parabola or a fourt
order polynomial. The calculations of Brener and Temk
have been performed for a nonaxisymmetric dendrite. In F
1 a dendrite is shown where the fins reach down to the d
drite tip as an example of a nonaxisymmetric dendrite
For dendrites with a somewhat more axisymmetric tip su
as the ones found for succinonitrile~SCN! this fit may be
less appropriate. Such dendrites have been studied in R
@5,6#.

First attempts to characterize dendritic structures w
based on the studies of Papapetrou@7# and Ivantsov@8#, who
found a rotational paraboloid to be a steady state solutio
the diffusion problem of the latent heat. Fitting the tw
dimensional projection of a dendrite with a parabolay
5ax2, Hürlimannet al. @9# realized that the fitting paramete
a depends on the fitting heighth and used an extrapolation t
the fitting height h→0 to define the tip radiusR0
5 limh→0Rparab(h). Dougherty and Gollub@10#, on the
other hand, used a fixed, arbitrary heighty53R for fitting.
LaCombe et al. @5# used fourth-order polynomials to de
scribe the shape of a dendrite. Finally Bisang@2# fitted the
shape of a dendrite by ay}x1.67 power law and found grati-
fying agreement with the findings of Brener@4#. This short
historical overview shows that the experimental determi
tion of the tip radius differs significantly. A similar overview
can be found in Ref.@6#.

It should be noted that depending on the underlying a
lytical assumption of the shape of the tip an exact deter
nation of the tip radius is not possible~as shown above!. The
exception is the parabola, and at first sight the approac
Hürlimann et al. @9# seems quite reasonable to reduce ar
trariness. However, we will show that depending on
choice of the extrapolation a huge regime of differentR0 can
be obtained. Let us assume that Bisang’s finding of a desc
tion of the tip radius with Brener’s model holds even f
heights very close to the dendrite tip:f (x)5ax5/3. For a
given heighth we will now fit this function with a parabola
f 2(x)5cx2:

E
0

l

~ax5/32cx2!2dx5
!

min, ~6!

where l is defined byh5 f ( l )5al5/3. After a short calcula-
tion it is found that the tip radius follows the relation

R~h!5
7

15

S h

aD 1/5

a
, ~7!

thus leading to an extrapolation limh→0R(h)50 for an ana-
lytical function. As limits are never reached when deali
with experimental data usually an intervalDh is chosen
where the slope ofR(h) does not change ‘‘significantly’’ and
then is fitted with a straight line which will in 0 determin
the approximated extrapolated value of the tip radiusR0Exp .
03260
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This is depicted in Fig. 2. Different fits for severalDh start-
ing at each arrow are plotted. As can be easily seen, a h
domain of different extrapolated values forR0 can be found.
Therefore, this way of determination is not favorable.

Karma et al. @6#, noticing the problem of the determina
tion of the tip radius as well, presented an integral method
finding Rtip of three-dimensional simulated dendrites by i
tegrating cross sections perpendicular to the axis of gro
very close to the tip and determining the tip radius by t
calculated areas. However, it should not be neglected tha
least in certain cases integral methods might hide relev
and system dependent information, for example in the te
poral evolution of the tip radius, as integral methods tend
smooth out noise or possible small oscillations.

We think that the tip radius, being such an importa
value, should be determined in a way that is independen
analytical assumptions of the shape of the tip and is o
based on geometrical properties. Moreover the met
should be resistant against pixelization errors and should
change significantly on successive images unless there
physical reason for this behavior~such as tip splitting for
example, where the tip radius increases before splitting@11#!.

In Ref. @2# it was shown, at least for xenon dendrites, th
although higher order polynomials (n53, . . . ,7) approxi-
mate the tip shape better than a parabola, a dependenc
the fitting height is found which cannot be neglected. F
polynomials withn.7 the fits became numerically unstabl
Additionally the tip radius shows a dependence on the or
of the fitting polynomial and no order of the polynomials th
would best fit the contour could be found. Therefore it w
concluded that the tip shape of xenon dendrites could no
described by a parabola or low-order polynomials in a we
defined and reproducible way. In Ref.@5#, on the other hand
it was found that a fourth-order polynomialy52r 2/2
2Q(f)r 4, wheref corresponds to the deviation from th

FIG. 2. Experimental determination of the tip radius by extrap
lating the valueR0. Different fits for severalDh ~starting at every
arrow! are plotted. A huge domain of differentR0 can be found.
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maximal projection area, was sufficient to describe the
shape of SCN dendrites. Indeed, the coefficients of suc
presumed polynomial have a physical meaning. Howeve
order to introduce a certain uniformity into the measu
ments of different substances we propose a more mode
dependent determination of the tip shape.

It is our aim to motivate the generalization by anoth
geometrical interpretation of the tip radiusR51/2a in the
parabolic case. Let us consider the functiony5 f (x)5ax2,
having its tip in the origin. The lengthR51/2a5 1

2 (1/a) is
exactly 1

2 of the distancex, wheref (x) intersects the function
y5x:

ax25x ⇒ x5
1

a
. ~8!

We therefore define the generalized scaling length as1
2 of

the distance where a convex function@for exampley5 f (x)
5axb for Brener’s model# meetsy5x:

axb5x ⇒ x5S 1

aD 1/(b21)

~9!

and

L5
1

2 S 1

aD 1/(b21)

, ~10!

recovering in the case ofb52 the parabolic tip radius. The
behavior for different parametersb is shown in Fig. 3. In the
case of dendritic growth withb5 5

3 we find L5 1
2 (1/a)3/2.

Scaling dendrites by this length scale (x̃5x/L, ỹ5y/L)
will result in

FIG. 3. Generalized length scale defined as half of the dista
of the point of intersection between the curve@in this casey
5 f (x)5axb] with the line y5x. Here the parameterb goes from
0.7 to 4.0. This scale can be applied to any experimental data i
pendently of an underlying assumption of the analytical shape.
03260
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Lỹ5a~Lx̃!b ~11!

ỹ5Lb21ax̃b5aS 1

2D b21F S 1

aD 1/(b21)Gb21

x̃b5S 1

2D b21

x̃b.

~12!

The prefactorc5( 1
2 )b21 depends only onb and is therefore

universal for all shapes with the sameb. By introduction of
the length scaleL it is thus possible to define a valid scale f
all b.1.

FIG. 4. Generalized tip radius for different fitting heights a
different fitting methodsf 1 . . . f 4. The variance of the tip radius is
less than 1.5% of the average tip radius.

FIG. 5. Generalized tip radius for successive images at a g
fitting heighth55L for the different fitting functionsf 1 . . . f 4. The
variance of the tip radius is less than 6% of the average tip rad
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Indeed the presented method is independent of any un
lying analytical assumptions of the shape. The presented
termination can be easily used for simulations and analyt
functions as well as for experimental data. We would like
emphasize that this generalized tip radius is derived from
tip radius for a parabola and corresponds only in the pa
bolic case to the actual radius of curvature. A circle for e
ample described byy5r 2Ar 22x2 having a radius of cur-
vature of Rcurv5r would have a generalized tip radius
Rtip5 1

2 r .
It should be noted that experimental data are usually

smooth at all due to measurement errors or pixelization
the method is applied directly to the pixels huge errors m
be taken into account. We therefore suggest fitting the
perimental data by a sufficiently high order polynom
~4–6! in order to receive a least square analytical descrip
of the data. These coefficients of the polynomial as such
not physically relevant as they serve only to accurately
scribe the data. A subsequent intersection withy5x is very
easy to perform.

In order to test the independence of analytical assu
tions we have used different fitting methodsf 1
5ax5/3, f 2/3/45pol(4,5,6), where pol(n) meansnth order
polynomial. However, we did not use a simple parabola fit
Bisang found very good agreement for Brener’sy5ax5/3 de-
pendence and found that a parabola fit does not adequ
describe the shape of our dendritic tips. We have found
.

n
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independent of the functionsf 1 . . . f 4 the relative error for
different heightsh53 . . . 5L is below 1.5% and for a fixed
heighth55L the relative error between two successive i
ages is less than 6%. These errors are the worst case we
encountered. We have also found sequences showing 0
for different heights and also 0.5% for successive images
plot for different heights is given in Fig. 4. The heights a
plotted up to a critical height, where the side branches s
to be visible. The behavior for successive images is show
Fig. 5.

We have presented a method which determines the
radius for any given experimental structure without any
sumption about the analytical description of the data. It w
shown that another reasonable scheme for determining
tip radius R05 limh→0Rparab(h) is not converging and
should therefore not be used. Fitting the dendrite tip by
fourth order polynomial does not eliminate the fitting heig
problem, although it approximates the tip shape much be
than a parabola. We have proved that with the presen
method the variance for the tip radius of fits with differe
fitting heights applied to one image is less than 1.5% and
relative error of the tip radius between successive image
less than 6%.

We thank Professor Dr. H. R. Ott for his support of o
experiments. This work was supported by the Swiss Natio
Science Foundation.
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